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Abstract
In this communication, the theory of field-free line (FFL) formation in a
magnetic field is investigated. It is shown that an FFL can be generated
by only three Maxwell coil pairs. By varying the applied currents, the FFL can
be arbitrarily rotated, while keeping the coils static in space. For translation,
additional Helmholtz coil pairs can be used. These findings enable efficient
realization of a field generating unit for a recently developed imaging method
named magnetic particle imaging.

PACS numbers: 87.50.C−, 41.20.−q

1. Introduction

Magnetic particle imaging (MPI) is a new imaging method capable of imaging the spatial
distribution of superparamagnetic iron oxide particles (SPIO) with high temporal and spatial
resolution [1–3]. For spatial encoding, MPI uses a magnetic gradient field providing a field-
free point (FFP), which is moved through the hole region of interest. Due to saturation effects,
only particles in the close vicinity of the FFP contribute to the signal induced in receive coils.
The size of this region, and in turn the sensitivity of MPI, is determined by the magnetic field
strength at which the particles reach saturation as well as the gradient strength of the FFP field
[4, 5].

Recently, it has been shown that the sensitivity of the method could be significantly
improved by using a simultaneous encoding scheme [6]. This can be accomplished by
scanning the region of interest with a field-free line (FFL) instead of the field-free point. A
comparison of the FFP field and the FFL field is provided in figure 1. For signal encoding,
the FFL is rapidly moved back and forth while rotating slowly. Such an encoding scheme
requires an assembly capable of rotating and translating the FFL exclusively by varying the
applied currents while keeping the setup static in space. Although the Halbach cylinders of
order three and higher [7, 8] are known to generate an FFL, they do not allow for rotating the
FFL non-mechanically.
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Field-Free Point Field Field-Free Line Field

Figure 1. Comparison of an FFP field and an FFL field. Here, black indicates zero field strength
and white indicates high field strength.

In [6] the first device was presented, which meets the aforementioned requirements. It
consists of 32 electromagnetic coils positioned at equidistant angles on a circle. However, no
proof was given that the assembly actually generates an FFL. Moreover, for resistive coils,
the suggested scanner requires about 1000 times the electrical power of a conventional FFP
scanner of equal size and gradient performance. Because of that, the authors were quite
pessimistic about the feasibility of the FFL concept.

The main result of this work is the fact that a rotating FFL can only be generated by three
or more Maxwell coil pairs using appropriate currents. To the best of our knowledge, the proof
presented here is novel and the problem of generating a rotating FFL was not investigated
mathematically to date. Using less than 32 coils significantly improves the efficiency of the coil
geometry. We present the first FFL coil assembly for MPI, which is feasible to manufacture
requiring for resistive coils roughly the same electrical power as that of an FFP scanner of
equal size and gradient performance.

2. Theory

2.1. Preliminaries

Consider a right-handed global Cartesian coordinate system with coordinates r = (x, y, z)T =
xex + yey + zez ∈ R

3, where ex , ey and ez denote the unit vectors in x-, y- and z-directions.
To make later derivations more convenient, we introduce a local coordinate system with
coordinates rβ . It is rotated counterclockwise by β within the xy-plane. Thus, three basis
vectors are given by e

β
x = (cos(β), sin(β), 0)T, e

β
y = (−sin(β), cos(β), 0)T and e

β
z = ez. To

transform the position of one of both coordinate systems into the other,

rβ = Rβr (1)

r = R−βrβ (2)

can be used. Here, Rβ = (
e

β
x ,e

β
y ,e

β
z

)
denotes the rotation matrix. Similarly, the magnetic

field H(r) in global coordinates can be expressed in local coordinates and vice versa by

Hβ(rβ) = RβH(R−βrβ), (3)

H(r) = R−βHβ(Rβr). (4)
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Figure 2. Coil assembly for the generation of a rotating FFL using L = 4 Maxwell coil pairs. The
current flow of each coil is indicated by arrows and the magnitude of the generated magnetic field
is shown as background image.

In the following sections, these relations are used to switch between the global coordinate
system, the local coordinate system of the FFL and the local coordinate systems of the
Maxwell coil pairs.

2.2. Field-free line field

In this work, FFL generation and rotation in a 2D plane are considered. More precisely, the goal
is to generate an FFL in the xy-plane that is orientated along direction dα

FFL = (cos α, sin α, 0)T

and crosses the origin. Then, FFL rotation can be easily achieved by varying the angle α. FFL
translation is later discussed in section 2.5. In local FFL coordinates rα , the rotated FFL field
has to fulfill the condition

Hα(rα) = 0 for rα = (x ′, 0, 0)T, x ′ ∈ R. (5)

Equivalently, this condition can be formulated in terms of the spatial derivative along the FFL,
which has to be zero if we additionally stipulate that the magnetic field is zero at the origin,
i.e.

∂Hα
x (rα)

∂eα
x

= 0 for rα = (x ′, 0, 0)T, x ′ ∈ R (6)

and Hα(0) = 0. (7)

2.3. Field-free line coil setup

In the following, we describe how the coil assembly is used to generate and rotate a magnetic
FFL. It consists of 2L coils (L � 3) that are positioned at equidistant angles ϕl = π l

L
on a

circle of diameter dtube. The coils point toward the center, as it is illustrated in figure 2. Each
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pair of opposing coils is arranged in Maxwell configuration [9] and driven by current flowing
in converse direction. The Maxwell coil pairs generate a constant gradient field with an FFP
at the center of the coordinate system. In rotated coordinates rϕl , the magnetic field of the lth
Maxwell coil pair is approximatively given by

Hϕl

l (rϕl ) = IlS

⎛
⎝2 0 0

0 −1 0
0 0 −1

⎞
⎠ rϕl = IlGrϕl . (8)

Here, Il is the current flowing through the coil pair and S is a factor determined by the coil
geometry. The field (8) represents the ideal magnetic gradient field, which is exactly generated
when the coils have infinite distance and diameter. In this section, we assume that the coils
fulfill these properties. For finite distance and diameter, the approximation is only valid in a
certain region at the center between both coils. Therefore, the FFL is expected to be accurate
only in a certain region as well, which is investigated in section 3. In global coordinates, the
field (8) is given by

H l(r) = R−ϕl H
ϕl

l (Rϕlr) = IlR
−ϕl GRϕlr = IlG

ϕlr,

where

Gϕl = S

⎛
⎝

1
2 + 3

2 cos(2ϕl) − 3
2 sin(2ϕl) 0

− 3
2 sin(2ϕl)

1
2 − 3

2 cos(2ϕl) 0
0 0 −1

⎞
⎠ . (9)

In FFL-coordinates rα , this field can be expressed as

Hα
l (rα) = IlG

ϕl−αrα.

Finally, to obtain the magnetic field generated by the complete coil assembly, the superposition
of the magnetic fields Hα

l (rα) is computed yielding

Hα(rα) =
L−1∑
l=0

IlG
ϕl−αrα = Dαrα, (10)

with

Dα = S

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

L−1∑
l=0

Il

(
1

2
+

3

2
cos(2ϕl − 2α)

)
−

L−1∑
l=0

Il

3

2
sin(2ϕl − 2α) 0

−
L−1∑
l=0

Il

3

2
sin(2ϕl − 2α)

L−1∑
l=0

Il

(
1

2
− 3

2
cos(2ϕl − 2α)

)
0

0 0 −
L−1∑
l=0

Il

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

2.4. Field-free line generation

To generate an FFL with the described coil assembly, the currents have to be chosen
appropriately. Weizenecker et al [6] proposed to use

Il = Ã sin2(ϕl − α) + C̃ = Ã

2
(1 − cos(2ϕl − 2α)) + C̃, (12)

without giving a rule how to select the parameters Ã and C̃. For convenience, we introduce
A = Ã

2 and γ = 1 + 2C̃

Ã
and express the currents as Il = A(γ − cos(2ϕl − 2α)). Now, we can

state our main result.
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Theorem 1. The superposition of L � 3 ideal gradient fields rotated by equidistant angles
ϕl = π l

L
generates a field-free line in the xy-plane through the center along direction dα

FFL

for currents Il = A(γ − cos(2ϕl − 2α)) with γ = 3
2 .

In order to prove the theorem, we need following lemma:

Lemma 1. Let L � 3, α ∈ R and q ∈ {1, 2} be given, then

L−1∑
l=0

cos

(
2qπ

l

L
+ 2qα

)
= 0. (13)

Proof of lemma 1. The result follows as a special case of the summation of the complex
roots of unity. It is well known that for L ∈ N and k = 1, . . . , L − 1

L−1∑
l=0

exp

(
2π i

kl

L

)
= 0.

By using the Eulers relation exp(iα) = cos(α) + i sin(α) and taking the real and imaginary
part of the sum one obtains

L−1∑
l=0

cos

(
2π

kl

L

)
=

L−1∑
l=0

sin

(
2π

kl

L

)
= 0.

Now, weight the cosine sum with cos(2qα) and the sine sum with sin(2qα) and subtract both
sums from each other to obtain

L−1∑
l=0

cos(2qα) cos

(
2π

kl

L

)
− sin(2qα) sin

(
2π

kl

L

)
= 0.

Using the trigonometric addition theorem cos(a + b) = cos(a) cos(b) − sin(a) sin(b) and
k = q completes the proof of lemma 1. �

Proof of theorem 1. Recall the FFL conditions stated in (6) and (7). Obviously, it holds that
Hα(0) = Dα0 = 0. Thus, it remains to be shown that

∂Hα
x (rα)

∂eα
x

= 0.

The spatial derivative along the FFL is the upper left component of the 3 × 3 matrix Dα given
in (11). Hence, we obtain

∂Hα
x (rα)

∂eα
x

= AS

L−1∑
l=0

(γ − cos(2ϕl − 2α))

(
1

2
+

3

2
cos(2ϕl − 2α)

)
.

By expanding the brackets and using the trigonometric formula cos2(a) = 1
2 + 1

2 cos(2a) we
derive

∂Hα
x (rα)

∂eα
x

= AS

[
L

(
1

2
γ − 3

4

)
+

(
3

2
γ − 1

2

) L−1∑
l=0

cos(2ϕl − 2α) +
3

4

L−1∑
l=0

cos(4ϕl − 4α)

]
.

Due to lemma 1, both sums vanish for L � 3 yielding

∂Hα
x (rα)

∂eα
x

= ASL

(
1

2
γ − 3

4

)
. (14)
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Hence, the spatial derivative along the FFL is zero for γ = 3
2 yielding the proposition of

theorem 1. �

In a similar way, the gradient strength in perpendicular directions to the FFL can be
computed yielding

∂Hα
y (rα)

∂eα
y

= −∂Hα
z (rα)

∂eα
z

= ASL
3

2
. (15)

To achieve a certain gradient strength G, the current parameter A has to be chosen as

A = 2

3

G

SL
. (16)

2.5. Field-free line translation

For translating the FFL, three Helmholtz coil pairs can be used, which are orientated in x-, y-
and z-directions (not shown in figure 2). In x- and y-directions, it is possible to share the same
coils for generating and translating the FFL by superposition of the currents in the respective
coils. Each of the Helmholtz coil pairs generates a homogeneous magnetic field, ideally given
by

Hx(r) = IxSxex, (17)

Hy(r) = IySyey, (18)

Hz(r) = IzSzez. (19)

The superposition

H trans = (IxSx, IySy, IzSz)
T (20)

allows for generating a homogeneous field in any direction in space.

Lemma 2. The FFL generated by the superposition of L � 3 ideal gradient fields can be
translated to position t = (tx, ty, tz)

T ∈ R
3 using a homogeneous translation field H trans =

−Hα(t).

Proof of lemma 2. At position t, the rotated FFL field is given by Hα(t). For translating
the FFL to position t, the total magnetic field H at this very point has to be canceled out, i.e.

H(t) = Hα(t) + H trans = 0.

Thus, the direction of the translation field has to be

H trans = −Hα(t).

As the spatial derivative is not affected by the homogeneous field, it remains zero in direction
dα

FFL. Thus, an FFL is established that crosses point t and is orientated along dα
FFL. �

3. Simulation

Next, we leave the assumption of idealized gradient fields and turn toward the magnetic field
actually generated by the coil setup. Then, the magnetic field of each Maxwell coil pair is
linear only for the high symmetric point and deviates in radial direction from the ideal case.

In order to examine the accuracy of the FFL for real magnetic fields, simulations are
carried out using numerical evaluation of the Biot–Savart law [10]. Different numbers of
Maxwell coil pairs L = 3, 4, 8, 16 and a circle diameter of dtube = 0.5 m are used. The
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Figure 3. Simulated magnetic fields in x-, y- and z-directions in coordinates of the rotated FFL for
different numbers of Maxwell coil pairs. Shown are the first 0.16 m of the 0.25 m circle radius, on
which the coils are located.

diameter of each coil is chosen as large as possible without intersecting the neighboring
coils, i.e. dL = dtube tan π

2L
. Consequently, the size of the coils, and in turn the sensitivity S,

decreases with increasing L. Further, for fair comparison of the electrical power loss, the coils
have a cross-section, which is proportional to the square of the coil diameter dL. Hence, the
coil resistance is inversely proportional to dL. The current parameter is adapted to generate a
gradient strength of 1.0 Tm−1μ−1

0 perpendicular to the FFL at the center.
The quality of the resulting fields is illustrated in figure 3. For each L, the angle αL is

chosen such that the FFL is located in-between the symmetry axes of two subsequent coils, i.e.
αL = π

2L
. At this angle, the quality of the FFL is found to be worst. As it can be seen, the best

FFL, and the most constant gradient in y-direction, is obtained for L = 4. In the z-direction,
L = 3 results in the most constant gradient.

For power loss considerations, the required electrical power of the FFL coil setup is
compared to that of a Maxwell coil pair generating an FFP field with 1.0 Tm−1μ−1

0 gradient
strength in x-direction and half of this value in y- and z-directions. The resulting numbers are

7



J. Phys. A: Math. Theor. 43 (2010) 012002 Fast Track Communication

Table 1. Electrical power loss of FFL setups using different coil pair numbers L. The numbers are
given relative to the electrical power loss of an FFP scanner of equal size and gradient performance.

L 3 4 8 16

P FFL
L /P FFP 3.3 6.9 74.4 1081.2

listed in table 1. As can be seen, less coils do not only provide a better field but are additionally
considerably more efficient.

4. Conclusion

In conclusion, we have proven that a magnetic field-free line can be established at an arbitrary
direction in a 2D plane by only three Maxwell coil pairs. In simulations of real coil setups,
the optimal number of Maxwell coil pairs of the presented setup was found to be 3 or 4
depending on whether it is the power loss or the quality of the generated magnetic field, which
should be optimized. Here, a certain coil geometry was considered, for which the coil size
decreases with the total number of coils used. It might be possible to further optimize the coil
configuration by using overlapping coils.

Using the proposed FFL setups for imaging with MPI allows us to determine the line
integrals of the particle concentration along the FFL. Therefore, the object is sampled in the
Radon space [11], so that one can think of applying reconstruction algorithms commonly used
in computed tomography [12].

The drastically reduced power consumption compared to the coil assembly proposed by
Weizenecker et al [6] denotes a major step for the feasibility of the FFL geometry and, due to
the improved sensitivity, for MPI in general. However, the concept of a field-free line is not
necessarily tied to MPI and might find its application in other fields as well.
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